A hybrid weakly nonconforming discretization for linear elasticity
نویسندگان
چکیده
منابع مشابه
A Mixed Nonconforming Finite Element for Linear Elasticity
This article considers a mixed finite element method for linear elasticity. It is based on a modified mixed formulation that enforces the continuity of the stress weakly by adding a jump term of the approximated stress on interior edges. The symmetric stress are approximated by nonconforming linear elements and the displacement by piecewise constants. We establish (h) error bound in the (broken...
متن کاملSymmetric Nonconforming Mixed Finite Elements for Linear Elasticity
We present a family of mixed methods for linear elasticity, that yield exactly symmetric, but only weakly conforming, stress approximations. The method is presented in both two and three dimensions (on triangular and tetrahedral meshes). The method is efficiently implementable by hybridization. The degrees of freedom of the Lagrange multipliers, which approximate the displacements at the faces,...
متن کاملTwo robust nonconforming H-elements for linear strain gradient elasticity
B Pingbing Ming [email protected] Hongliang Li [email protected] Zhong-ci Shi [email protected] 1 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China 2 The State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, No. 55, Zhong-Guan-Cun East Road, Beijing 100190, China...
متن کاملNonconforming Finite Element Methods for the Equations of Linear Elasticity
In the adaptation of nonconforming finite element methods to the equations of elasticity with traction boundary conditions, the main difficulty in the analysis is to prove that an appropriate discrete version of Korn's second inequality is valid. Such a result is shown to hold for nonconforming piecewise quadratic and cubic finite elements and to be false for nonconforming piecewise linears. Op...
متن کاملNonconforming Mixed Elements for Elasticity
We construct first order, stable, nonconforming mixed finite elements for plane elasticity and analyze their convergence. The mixed method is based on the Hellinger– Reissner variational formulation in which the stress and displacement fields are the primary unknowns. The stress elements use polynomial shape functions but do not involve vertex degrees of freedom.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2016
ISSN: 1617-7061
DOI: 10.1002/pamm.201610413